Privacy Preserving Data Mining over Vertically Partitioned Data
نویسندگان
چکیده
Vaidya, Jaideep Shrikant. Ph.D., Purdue University, August, 2004. Privacy Preserving Data Mining over Vertically Partitioned Data. Major Professor: Chris Clifton. The goal of data mining is to extract or “mine” knowledge from large amounts of data. However, data is often collected by several different sites. Privacy, legal and commercial concerns restrict centralized access to this data. Theoretical results from the area of secure multiparty computation in cryptography prove that assuming the existence of trapdoor permutations, one may provide secure protocols for any twoparty computation as well as for any multiparty computation with honest majority. However, the general methods are far too inefficient and impractical for computing complex functions on inputs consisting of large sets of data. What remains open is to come up with a set of techniques to achieve this efficiently within a quantifiable security framework. The distributed data model considered is the heterogeneous database scenario with different features of the same set of data being collected by different sites. This thesis argues that it is indeed possible to have efficient and practical techniques for useful privacy-preserving mining of knowledge from large amounts of data. The dissertation presents several privacy preserving data mining algorithms operating over vertically partitioned data. The set of underlying techniques solving independent sub-problems are also presented. Together, these enable the secure “mining” of knowledge.
منابع مشابه
Privacy Preserving ID3 over Horizontally, Vertically and Grid Partitioned Data
We consider privacy preserving decision tree induction via ID3 in the case where the training data is horizontally or vertically distributed. Furthermore, we consider the same problem in the case where the data is both horizontally and vertically distributed, a situation we refer to as grid partitioned data. We give an algorithm for privacy preserving ID3 over horizontally partitioned data invo...
متن کاملPrivacy Preserving CART Algorithm over Vertically Partitioned Data
Data mining classification algorithms are centralized algorithm and works on centralized database. In this information age, organizations uses distributed database. Since data mining of private data is one of the keys to success for an organization, it is a challenging task to implement data mining in distributed database. Collaboration of different organization brings mutual benefits to the pa...
متن کاملPrivacy Preserving Näıve Bayes Classifier for Vertically Partitioned Data
Privacy-Preserving Data Mining – developing models without seeing the data – is receiving growing attention. This paper assumes a privacy-preserving distributed data mining scenario: data sources collaborate to develop a global model, but must not disclose their data to others. Näıve Bayes is often used as a baseline classifier, consistently providing reasonable classification performance. This...
متن کاملPrivacy Preserving Naïve Bayes Classifier for Vertically Partitioned Data
Privacy-Preserving Data Mining – developing models without seeing the data – is receiving growing attention. This paper assumes a privacy-preserving distributed data mining scenario: data sources collaborate to develop a global model, but must not disclose their data to others. Näıve Bayes is often used as a baseline classifier, consistently providing reasonable classification performance. This...
متن کاملPrivacy Preserving Association Rule Mining in Vertically Partitioned Data
Data mining technology has emerged as a means for identifying patterns and trends from large quantities of data. This paper presents privacy preserving association rule mining across vertically partitioned data. We present an efficient algorithm to discover association rules with minimum levels of support and confidence, from heterogeneous data distributed across 2 parties, while preventing eit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003